

Luis Labarga, University Autónoma Madrid LSC Scientific Committee 6th Meeting 20100415

What is LAGUNA ?
 Feasibility study for LAGUNA at the LSC

What is LAGUNA ?

• The current European approach to the next generation, liquid [Mt-like], p-decay and neutrino detectors

• It considers seven candidate sites:

CUPP @ Pyhäsalmi mine, Finland -IUS @ Boulby mine, UK -SUNLAB @ Sieroszowice mine, Poland -IFIN-HH @ Unirea mine, Romania -LSM @ Frejus tunnel, France -New-Italian-Site @ CNGS beam halo, Italy -LSC @ Canfranc RW tunnel, Spain -

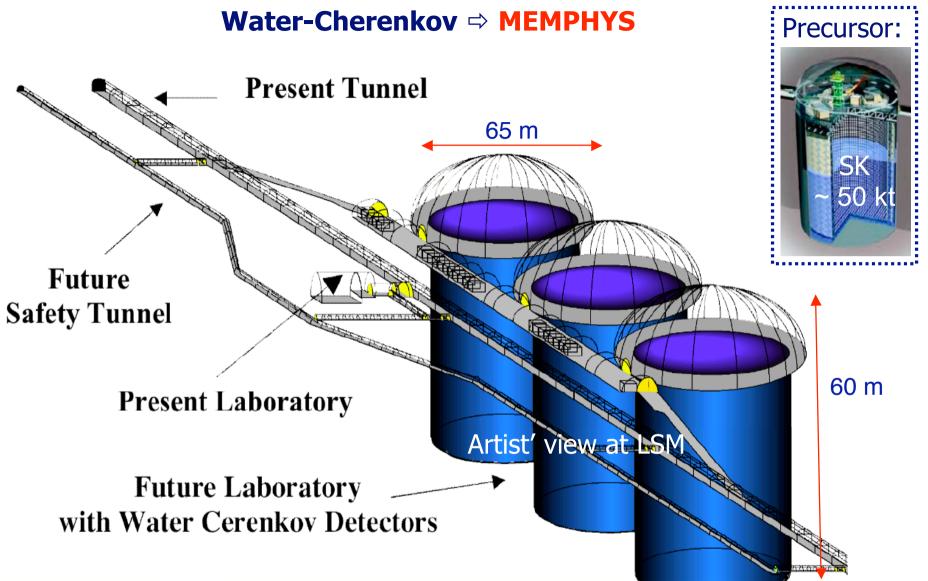
- It considers three different detector technologies:
 - Water-Cherenkov: ~ 1 Mt
 - Liquid-Argon TPC: ~ 0.1 Mt
 - Liquid-Scintillator: ~ 0.05 Mt

LNGS is not there (i!)

What is LAGUNA ? (II)

LAGUNA Governance structure

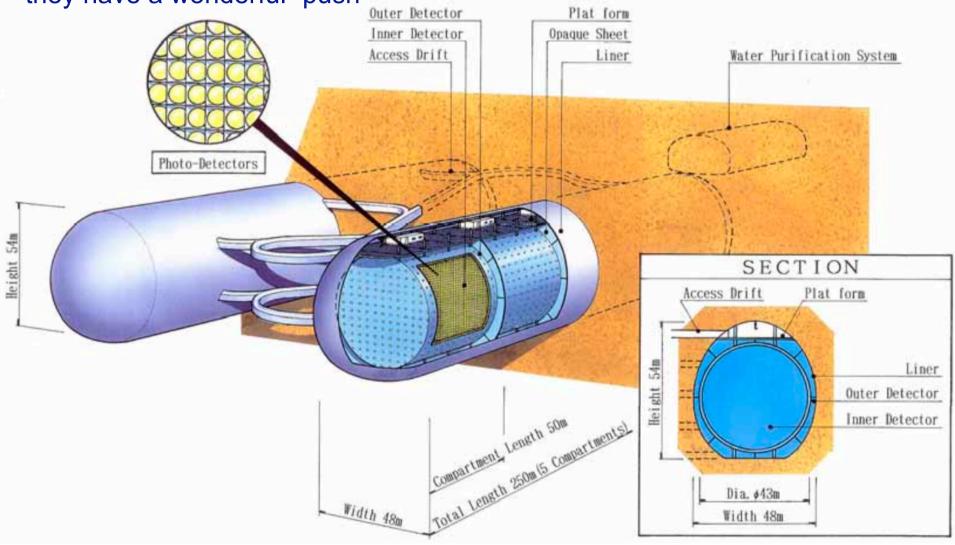
	Coordinator Deputy-Coordinator	A. Rubbia ??
	Governing Board	
	Coordinator	A. Rubbia
	Deputy-coordinator	??
	Administrator	F. Petrolo
	WG2 coordinator	F. von Feilitzsch
	WG3 coordinator	N. Spooner
	WG4 coordinator	A. Zalewska
	Academic partners' representatives	
	ETH Zurich	A. Marchionni
	U-Bern	A. Ereditato
	U-Jyväskylä	J. Maalampi
	UOULU	T. Enqvist
	CEA	M. Zito
	IN2P3	Th. Patzak
J	MPG	M. Lindner
	TUM	L. Oberaurer
,	IFJ PAN	Jan Kisiel - US (for IFJ PAN)
C,	LSC	A. Bettini
~/	UAM	L. Labarga 🚽
	UDUR	S. Pascoli
	USFD	P. Lightfoot
	AU	H. Fynbo
	IFIN-HH	R. Margineanu
	Industrial partners' representatives (ex-off	
	Rockplan	G. Nuijten
	KGHM CUPRUM	W. Pytel
	IGSMIE PAN	K. Slizowski
	Technodyne	J. Thompson
!)	AGT	M. Temussi
	Lombardi	P.F. Bertola

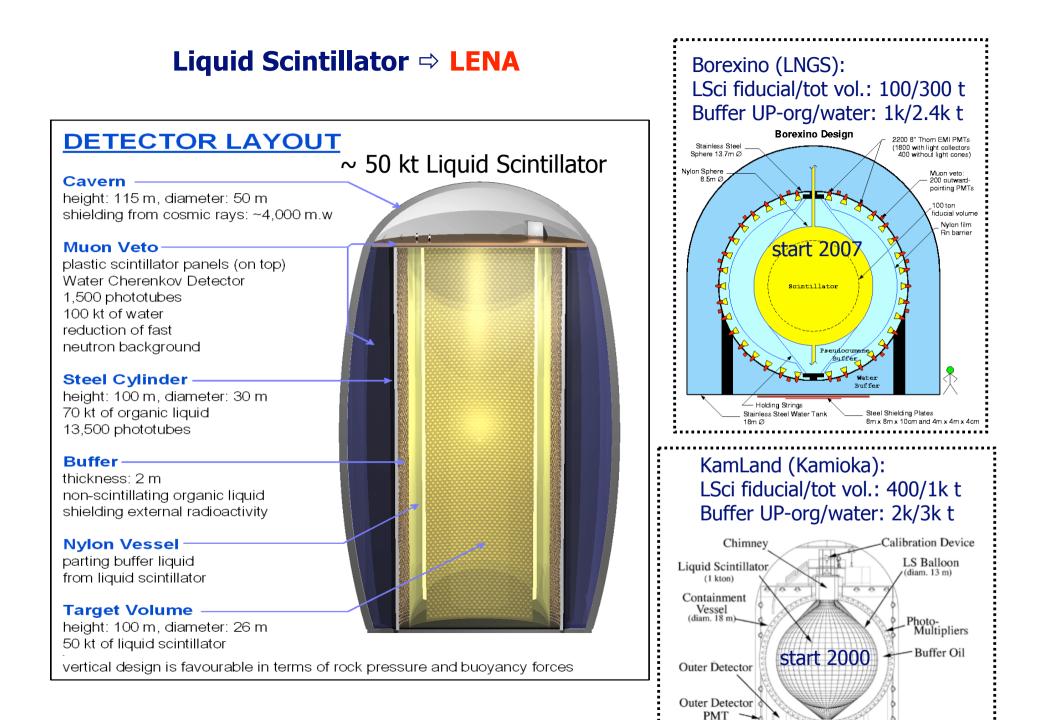

 a pre-Collaboration is formed. It did apply for 5 M€ funding to the EU within the program FP7-INFRASTRUCTUES-2007

 Only 1.7 M€ were granted. The explicit request by the EU was to focus in the Feasibility Study (FS), mainly Geotechnic, of the 7 candidate sites.

Italy (INFN) is not there (i!)

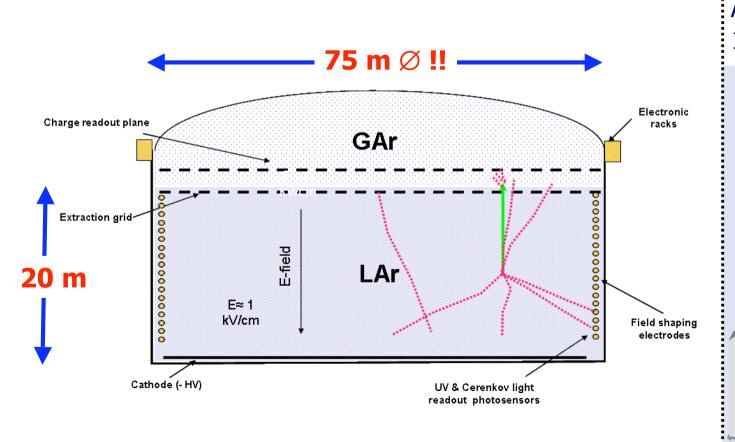
v2.0 / 14/10/08

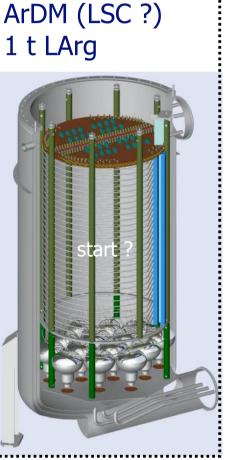

The **LAGUNA** detector-technology approaches



- hopefully with Gd solute
- each tank ~250 kt
- tank size limited by light attenuation length ($\lambda \sim 80m$) and pressure on PMTs
- readout : ~3 x 81K 12" PMTs, 30% geom. cover

LAGUNA (MEMPHIS) is the European "competitor" of SuperKamiokande's successor: HyperKamiokande


- they have the expertise
- they have a powerful $\boldsymbol{\nu}$ beam
- they have a wonderful "push"



Liquid Argon ⇒ GLACIER

- ~ 100 kt
- LAr storage based on LNG tank tech.
- Double Phase LEM readout (gain $\sim 10^4$)
- Cockroft-Walton (Greinacher) Voltage Multiplier (~ 1 kV/cm)
- Very Long drift distances (~ 20 m !!)

"Precursor"

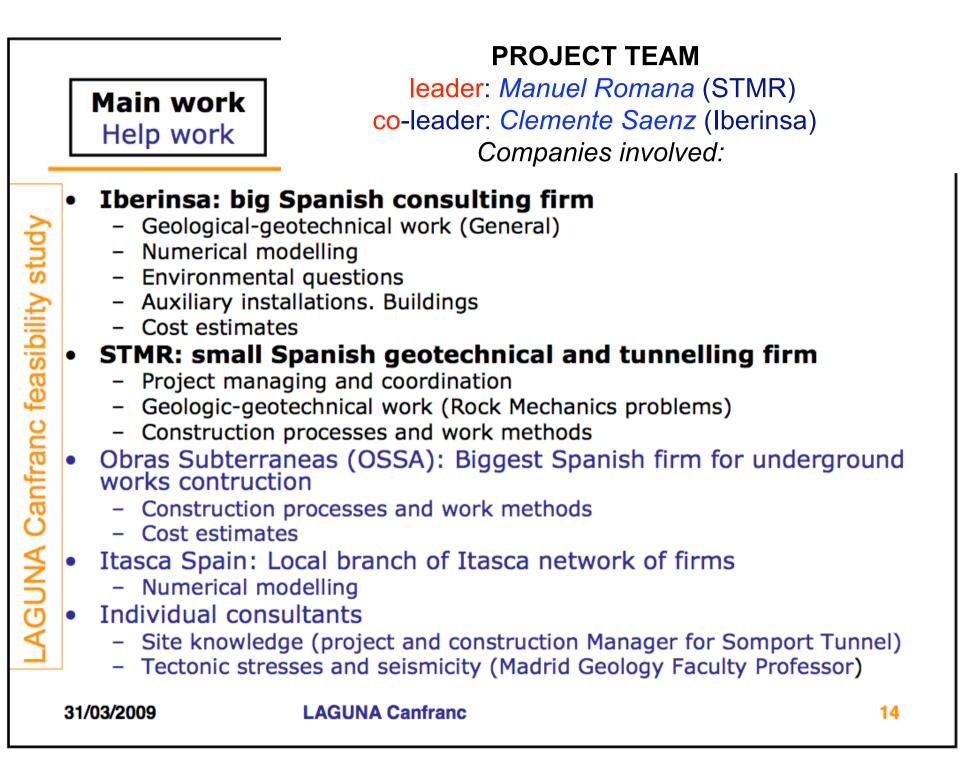
Rough Comparison of Potentialities:

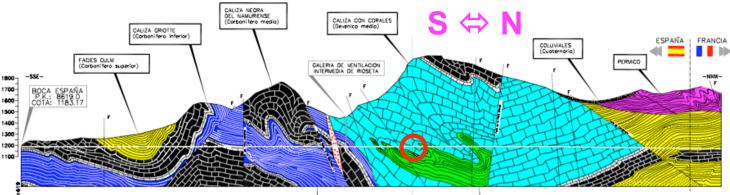
Table 12. Summary of the physics potential of the proposed detectors for astroparticle physics topics. The (*) stands for the case where gadolinium salt is added to the water of one of the MEMPHYS shafts.

to the water of one of the			D. Autiero et al.; JCAP11(2007)011
	GLACIER	LENA	MEMPHYS
Topics	100 kton	50 kton	440 kton
Proton decay			
$e^+\pi^0$	$0.5 imes 10^{35}$		$1.0 imes 10^{35}$
$ar{ u}K^+$	$1.1 imes 10^{35}$	$0.4 imes10^{35}$	$0.2 imes 10^{35}$
SN ν (10 kpc)			
\mathbf{CC} or inverse β	$2.5 imes 10^4 (u_e)$	$9.0 imes10^3(ar{ u}_e)$	$2.0 \times 10^5 (\bar{\nu}_e)$ (*)
NC	$3.0 imes 10^4$	$3.0 imes10^3$	_
ES	$1.0 imes 10^3(e)$	$7.0 imes 10^3(p)$	$1.0 \times 10^{3}(e)$
DSNB ν (S/B 5 yr)	40 - 60/30	9 - 110/7	43–109/47 (*)
Solar ν (evts. 1 yr)			
⁸ B ES	$4.5 imes 10^4$	$1.6 imes10^4$	$1.1 imes 10^5$
⁸ B CC		360	
⁷ Be		$2.0 imes10^6$	
pep		$7.7 imes 10^4$	
Atmospheric ν (evts. 1 yr)	$1.1 imes 10^4$		4.0×10^4 (1 ring only)
Geo ν (evts. 1 yr)	Below threshold	≈ 1000	Need 2 MeV threshold
Reactor ν (evts. 1 yr)		$1.7 imes10^4$	$6.0 imes 10^4$ (*)

⇒ "~ similar" physics output in "~ similar" periods of time

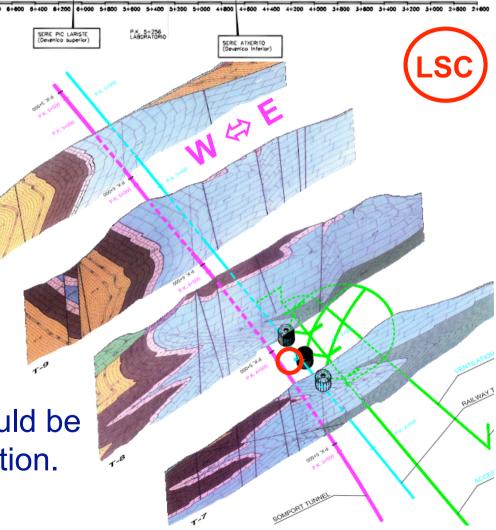
We must bear in mind, always, a possible new v beam, of some kind, from CERN


 \Rightarrow what is θ_{13} ?

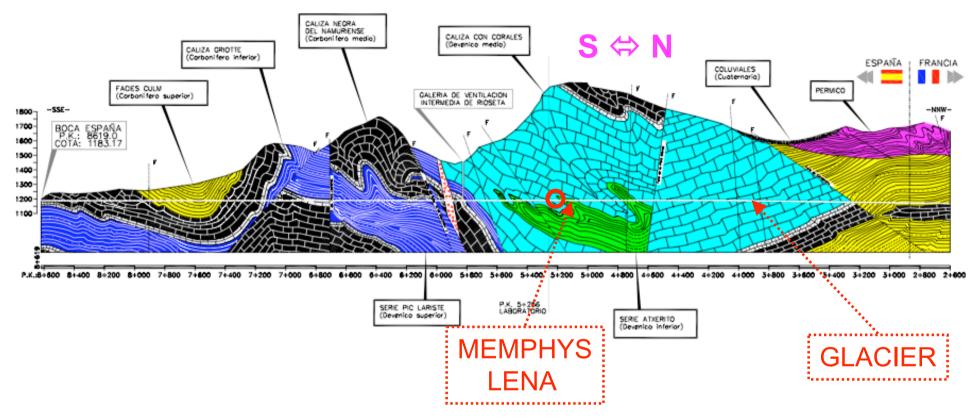

Feasibility Study for Laguna at the LSC

Some items about this first period LAGUNA-LSC

- The coordinator of the Feasibility Study (FS) for the LSC is L. Labarga (UAM); he has the help of LSC staff
- For the FS, LAGUNA-EU assigned ~145 K€ to the LSC, and 31 K€ to the the UAM, the LSC and UAM contributed with ~100 K€ and 7 K€ respectively (the later from the AC FPA2008-03002-E)
- The LSC has not Geotechnic Dept.; technical part had to be subcontracted
- July 2008 --> March 2009
 - Contact, discussions and (private) pre-selection of Geotechnic Companies candidate to carry out the FS for the LSC
 - Administrative and legal procedure to select the Company.
 - Select Company (got a "dream team", see next slide), sign contract, Company starts working
- February 2010: The Company delivers the main document basis of WP2's "Interim Report for the LSC" (almost final version, yet preliminary, is at <u>http://www.lsc-canfranc.es/</u> links activity → LAGUNA)



General I:


best compromise between overburden, rock quality, knowledge (within FS) and expectations of rock quality, centralization of services ... :

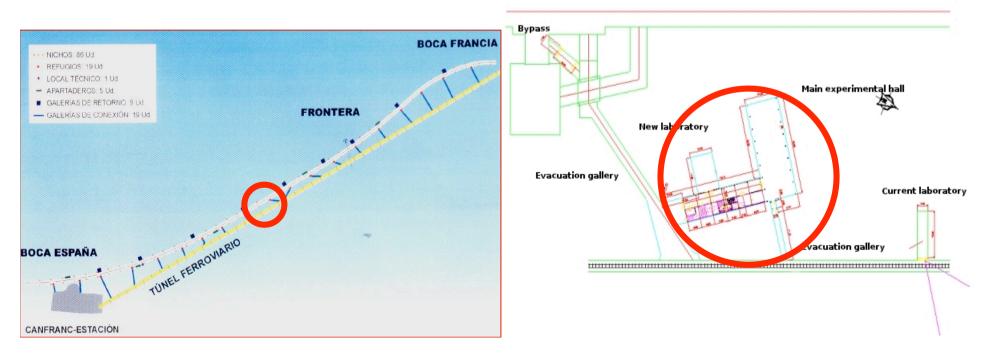
the LAGUNA experiment should be close to the current LSC location.

General II:

⇒ place MEMPHYS and LENA where overburden is largest

- GLACIER can work at shallower locations.
- Its 75 m \oslash dome (!) is a geotechnic challenge; less overburden and best rock quality will be of big help.
- There is a region along the tunnel shallower and of better rock
 place GLACIER there

The LSC lies physically in between:

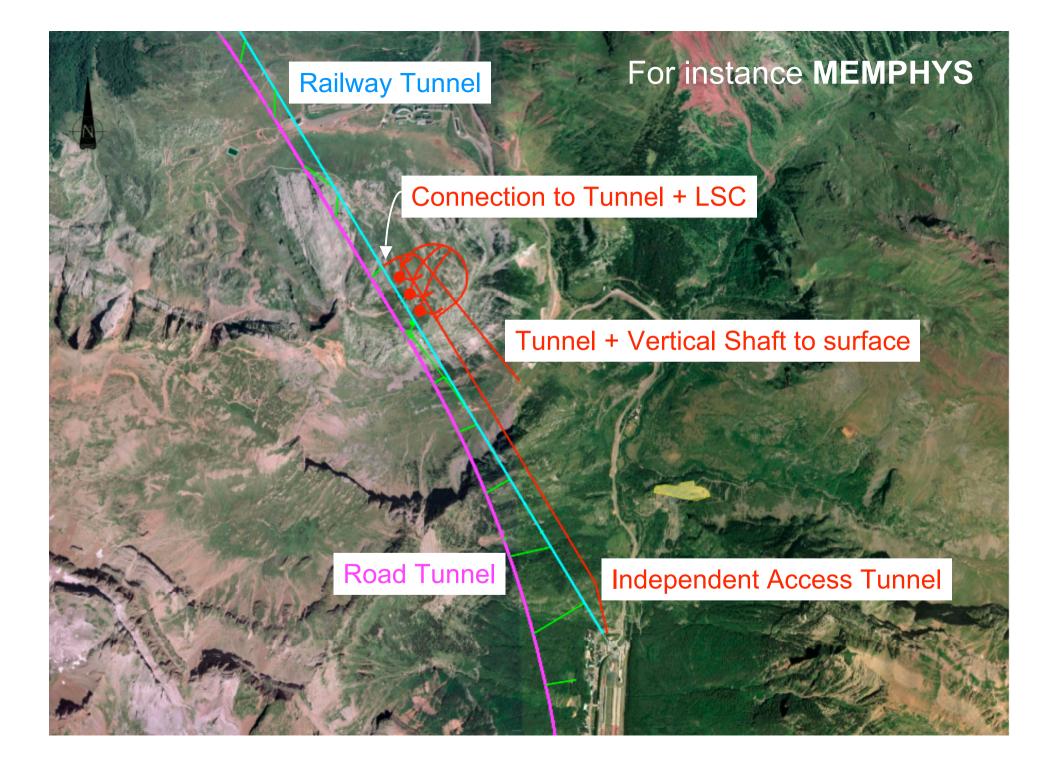

a New Road Tunnel (Somport tunnel, opened 2003)

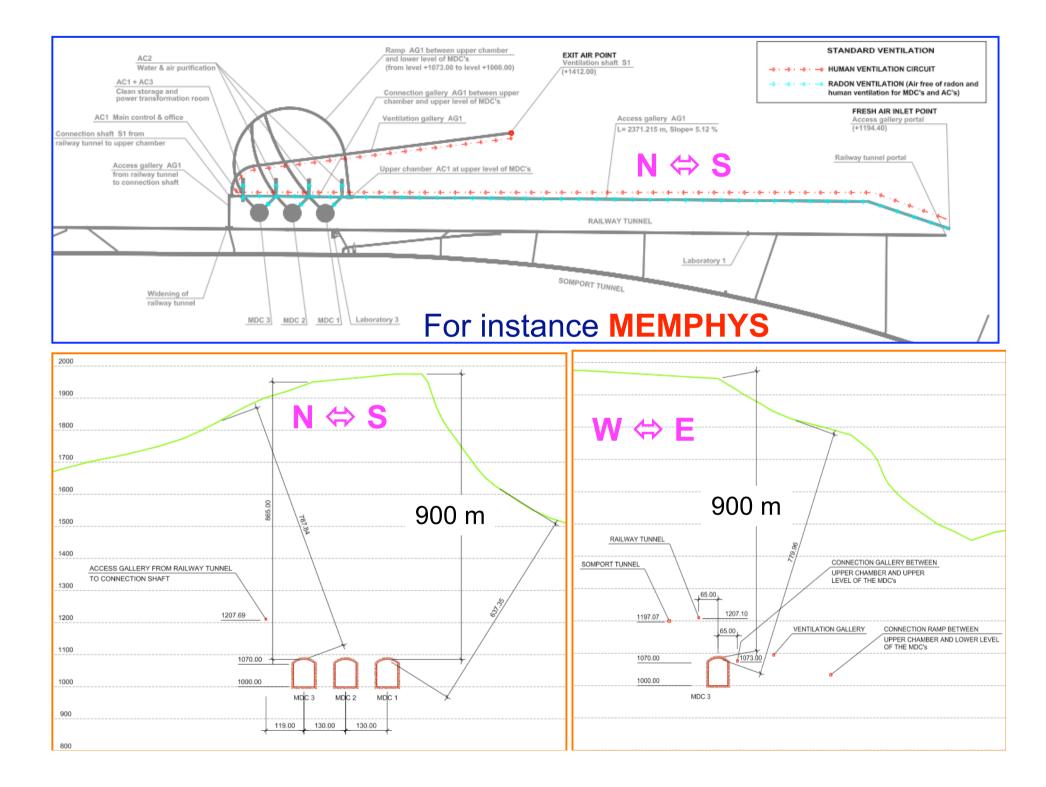
- binational: Spain (Jaca) France (Pau)
- Length: 8,6 Km (5,7 in Spain + 2,9 in France)
- State of the art on safety features (EU directive 2004)

an Old Railway Tunnel

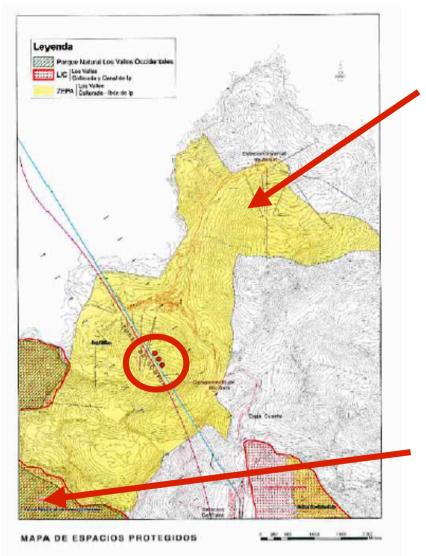
- Now used as service and emergency exit of Road Tunnel
- Safety galleries connecting both tunnels every 400 m

- Current Access for Laboratory



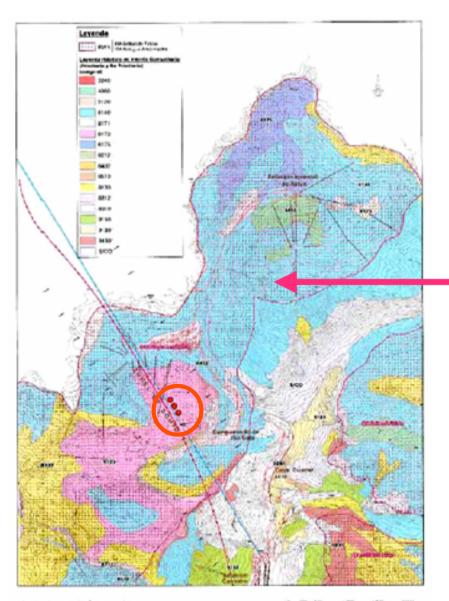

General III:

• The main layouts in the three experiments have been designed neither to interfere with the regular running of Road Tunnel nor with the emergency and service purposes of Railway Tunnel.


• Of course they try to take the maximum profit of them, but at the same time they are thought to operate independently if necessary.

- An independent access tunnel (2 3 Km long, ~ 4 7% downwards) almost parallel to existing ones
 - For construction access (!)
 - For regular operation/running and maintenance access
 - For radon-free air conduction
 - For supplies: energy, water, others
 - For Liquid Scintillator .OR. Liquid Argon supply by truck
 - For ventilation: regular operation/running and fire
- ⇒ A permanent connection with the Road and Railway tunnels and the LSC
 - For normal operation (connection to LSC)
 - As an emergency escape way
- ⇒ Another tunnel + vertical shaft to the surface
 - For ventilation: regular operation/running and fire

Environmental I:



LIC ≡ SCI, Spaces of Community Importance; ZEPA ≡ SPA, Special Protection Areas (Birds); Parque Natural ≡ Nature Park

Nearby protected sites

- Special protected area for birds (ZEPA)
 - Includes site
 - There is a rare vulture protected species
 - No influence for underground works
 - Regulations for surface works during birds nesting period
- Nature Park
 - Far away from the site

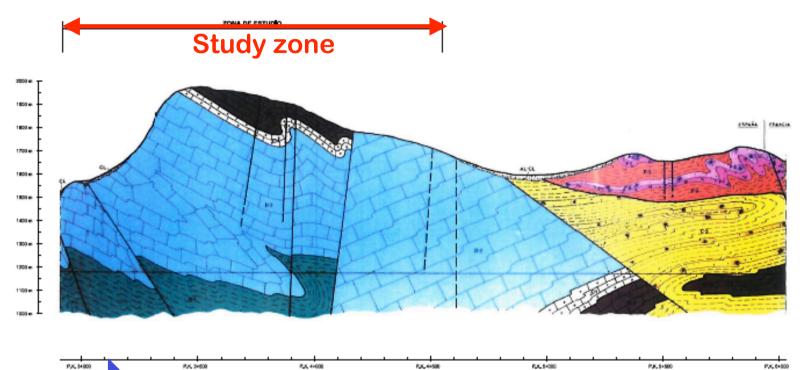
Environmental II:

Animals habitats network

- Maps for animal and vegetal habitats network around the site have been drawn
- There is no special problem at the site for underground works

MAPA DE HÁBITATS

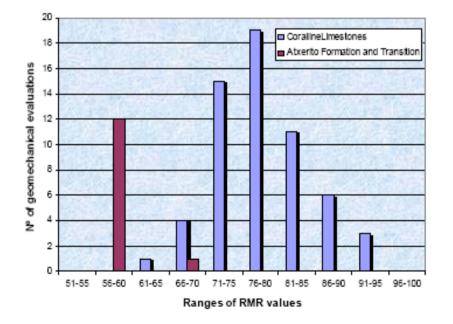
Environmental III:


Places for waste rock

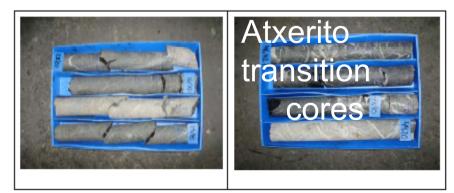
Waste rock quantities are big MEMPHYS ~1.000.000 m³ GLACIER ~200.000 m³

Two sites are selected closer than 20 Km. with no environmental problems

The places would be reforested like it was done for the Road Tunnel waste rock sites


Geology I: profile at site from Road Tunnel studies

- Calcareous slate (Atxerito series) LSC
 - Metamorphic (low grade)
 - Schistose texture
- Limestone (Coralline limestone Series)
 - Sedimentary
 - Bedded texture


Geology II: geological studies in this FS

- Retrospective analysis of falls in the current LSC in order to check the real rock parameters around the laboratory
- Revision and analysis of geological data gathered at Road Tunnel excavation fases
- Two probing boreholes (40 and 70m long) in key locations
- Laboratory tests

Two boxes of S-1. At left, from 11,00 to 13,25 meters deep. At right, from 37,00 to 39,20.

Two boxes of S-2. At left, from 25,90 to 28,20 meters deep. At right, from 44,20 to 46,420.

Geology III: conclusions and assumptions for calculations

- •The rock in most of the site is good quality marine coraline limestone
- •There is a transition between the limestone and medium quality folded Atxerito beds
- •The distribution of both rocks is well known at the Road Tunnel elevation (both from tunnel excavation and further studies for LAGUNA project)
- •To know the exact distribution of both rocks at larger depths it is necessary a further campaign of geological-geotechnical boreholing

The rock assumptions for the calculations of this study are:

- MEMPHYS and LENA are assumed to lie in the worst possible situation (the Atxerito beds)
- GLACIER is known to lie in good quality limestones beds

Conceptual support design I: MEMPHYS and GLACIER

There are *no precedents*

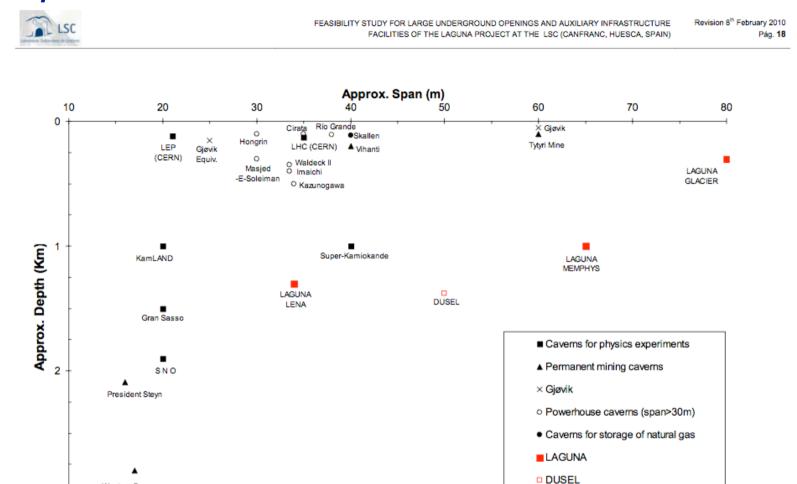


Figure 3.1-5. Scattered plot span vs. depth of permanent large caverns classified by use.

M. Romana: "we are dealing with world record stuff"

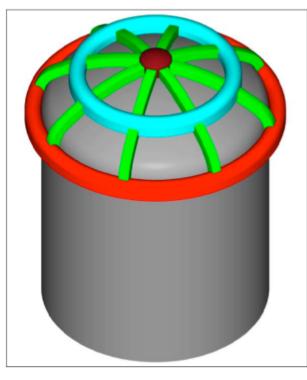
Western Deep

3 1

Conceptual support design I: MEMPHYS and GLACIER

There are *no precedents*

Their big spans cannot be supported by conventional methods (cables < 20 m, bolts, shotcrete):


•Able to cope with rock stresses near excavation limits

•Able to cope with "minor" wedges (relative to big spans)

•Not able to cope with "major" wedges

A complete concrete roof vault is not considered

⇒ Go for a partial concrete structure to cope with eventual big wedges

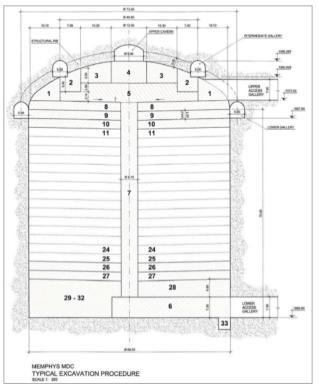


Figure 7.3-2. Perspective view of the vault system.

Figure 7.3-3. Excavation sequence for the MEMPHYS caverns.

Conceptual support design II: LENA

There are precedents: Mingtan cavern in weak rock (by *Hoek*)

1. Preliminary circular gallery excavated over the cavern

2. Support cables installed from the gallery before cavern excavation

3. Support completed with more cables, bolts and shotcrete during excavation

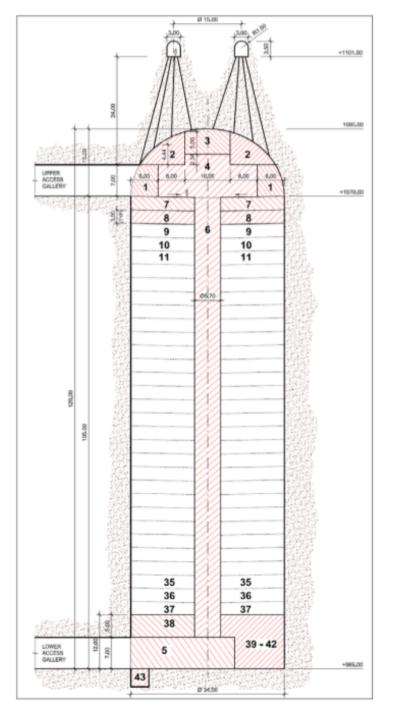
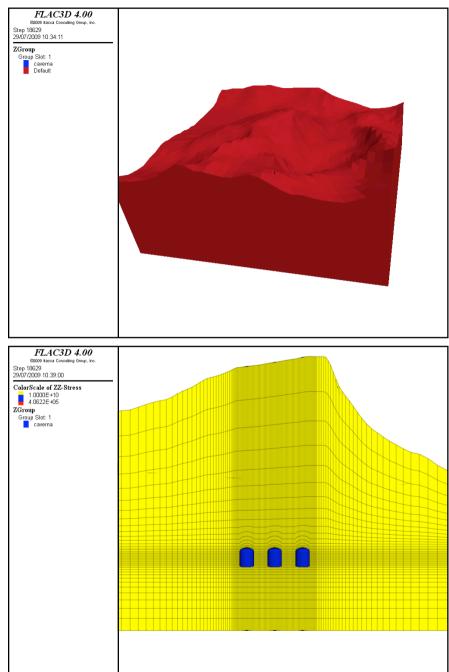
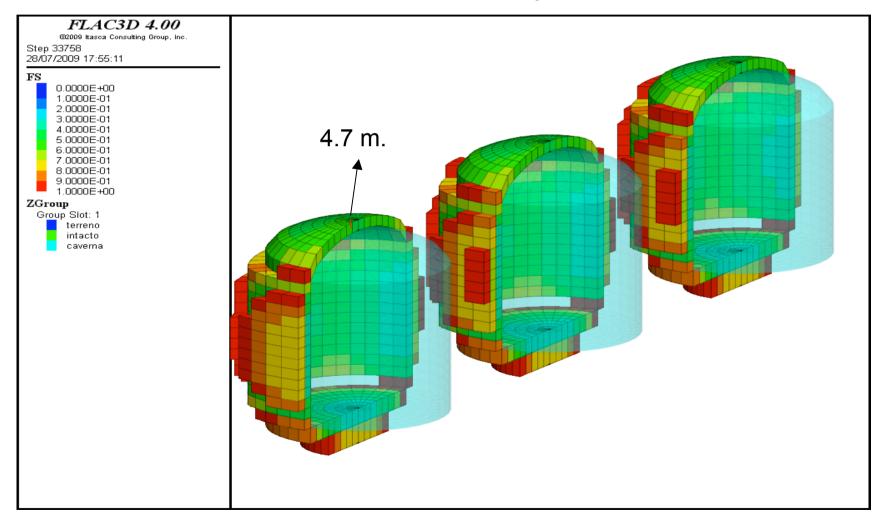



Figure 8.3-3. Excavation sequence for the LENA cavern.

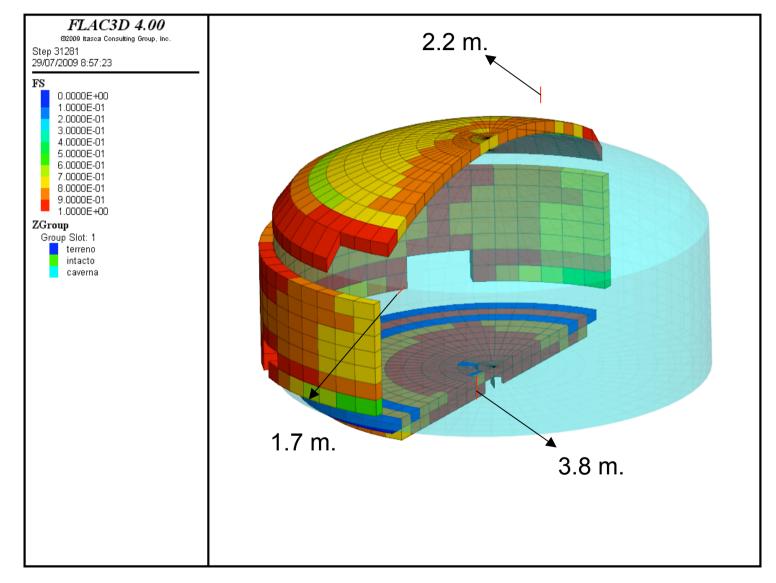
First estimation of the caverns feasibility I:



Modelling / Calculations [elastic]

- 1. Check the effect of real topographic features
 - ⇒ no significant effect

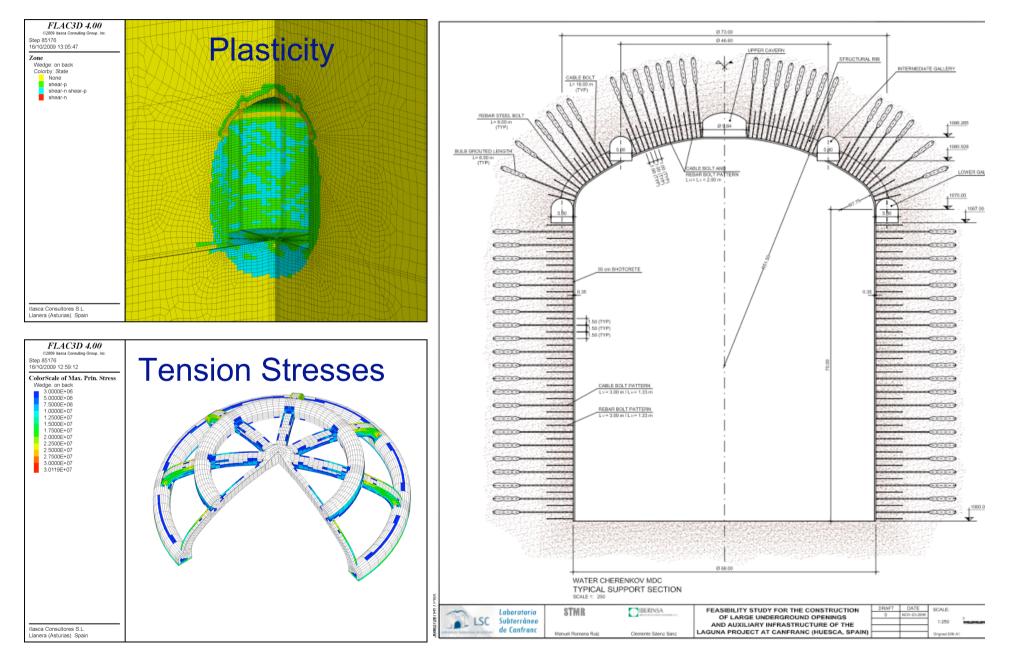
First estimation of the caverns feasibility II: Modelling / Calculations [elastic]


2. Three MENPHYS caverns; Plasticity Indicators ⇒ OK

First estimation of the caverns feasibility III:

Modelling / Calculations [elastic]

3. enormous GLACIER cavern; Plasticity Indicators ⇒ OK


Realistic Calculation: MENPHYS elasto-plastic modelling

- Assumed worst rock conditions
- Almost all construction stages (slightly simplified)
- Three different behaviour laws for concrete
 - Elastoplastic
 - Brittle failure
 - Softening
- Two different concrete sequences
 - Prior to cavern excavation
 - By stages with cavern excavation
- Concrete needs some reinforcement in the roof lower gallery

Elastic modelling studies allows us to extrapolate valid conclusions for LENA and GLACIER pre-designs

Example for illustration follows:

Pre-design after elasto-plastic structural calculations of one of the three **MENPHYS** detector' caverns

we even don't forget (try to) that part of our day-to-day life is outside physics

the LSC, candidate LAGUNA site, is in the middle-sized village of Canfranc

at 21 Km from the

old (~1097) but lively (~15000 inhab.) city of Jaca, that is well capable to provide all living services / needs

> both with excellent road communications with all major Spanish cities, ports, airports etc.

also ...

technicians, admin. personnel, engineers, scientists, etc. may relax after duty in the two excellent nearby (< 3 Km) sky resorts **Candanchú** and **Astún**

How much would it cost ????

MEMPHYS

GLACIER

CHAPTER 1 MDC EXCAVATION		CHAPTER 1 MDC EXCAVATION	
1.1 MDC EXCAVATION	70.60D.064,33€	1.1 MDC EXCAVATION	14.900.941,42€
1,2 MDC SUPPORT	40.095.850,77€	1,2 MDC SUPPORT	9.381.232,69€
PARTIAL CHAPTER 1 (euros)	110.695.915,10€	PARTIAL CHAPTER 1 (euros)	24.282.174,11€
CHAPTER 2 ACCESS GALLERIES AND CAVERN EXCAVATIONS AN	ID SUPPORT	CHAPTER 2 ACCESS GALLERIES AND CAVERN EXCAVATIONS AND S	SUPPORT
2,1 ACCESS GALLERIES	27.959.089,29€	2,1 ACCESS GALLERIES	17.128.604,17€
2,2 AUXILIARY CAVERNS	2.965.952,24€	2,2 AUXILIARY CAVERN 8	1.182.241,56€
2,3 VENTILATION GALLERY AND SHAFT	7.301.400,87€	2,3 VENTILATION GALLERY AND SHAFT	8.151.843,43€
PARTIAL CHAPTER 2 (euros)	38.226.502,40€	PARTIAL CHAPTER 2 (euros)	28.462.689,17€
CHAPTER 3 INSTALLATIONS		CHAPTER 3 INSTALLATIONS	
2,1 CONSTRUCTION INSTALLATIONS	641.750,00€	2,1 CONSTRUCTION INSTAL LATIONS	641.750,00€
2,2 UNDEGROUND INSTALLATIONS	9.993.420,00€	2,2 UNDEGROUND INSTALLATIONS	6.213.500,00€
2,3 SURFACE INSTALLATIONS	251.650,00€	2,3 SURFACE INSTALLATION 8	251.650,00€
PARTIAL CHAPTER 3 (euros)	10.886.820,00€	PARTIAL CHAPTER 3 (euros)	7.108.900,00€
CHAPTER 4 ENVIRONMENTAL MANAGEMENT		CHAPTER 4 ENVIRONMENTAL MANAGEMENT	
4,1 ENVIRONMENTAL MANAGEMENT	700.000,00€	4,1 ENVIRONMENTAL MANAGEMENT	620.000,00€
PARTIAL CHAPTER 4 (euros)	700.000,00€	PARTIAL CHAPTER 4 (euros)	620.000,00€
CHAPTERS 1 TO 4 (euros)	160.509.237,50€	CHAPTERS 1 TO 4 (euros)	68.471.763,28€
HEALTH AND SAFETY	2.407.639,00€	HEALTH AND SAFETY	877.076,00€
UNDERGROUND MONITORING	481.528,00€	UNDERGROUND MONITORING	233.887,00€
FURTHER SUBSOIL EXPLORATION	1.029.354,00€	FURTHER SUBSOIL EXPLORATION	617.612,40 €
DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES	2.639.910,76€	DETAILED DESIGN AND PROFESSIONAL ASSOCIATION FEES	1.269.035,27€
TOTAL CONSTRUCTION COST	167.067.669,26€	TOTAL CONSTRUCTION COST	61.469.373,95€
13% OVERHEAD EXPENSES	21.718.797,00€	13% OVERHEAD EXPENSES	7.991.018,61 €
6% INDUSTRIAL PROFIT	10.024.060,16€	6% INDUSTRIAL PROFIT	3.688.162,44 €
TOTAL CONTRACTOR BUDGET	198.810.526,42€	TOTAL CONTRACTOR BUDGET	73.148.666,00 €
16% VAT	31.809.684,23€	16% VAT	11.703.768,80 €
TOTAL TENDER COST	230.620.210,65€	TOTAL TENDER COST	84.852.323,80 €

How long will it take ????

MEMPHYS

0	MEMPHYS MDC's. CONTRUCTION TIMETABLE																																						
																				ONTHS									_										
PART OF CIVIL WORKS			YEAR	_	_				AR 2	_				YEA						EAR 4					YEAR			\top			EAR 6						AR 7		
ACESS GALLERY	1.1	3.4			10 11	12:13:1	4 15 8	10.0	10.2	21.22	29 24	25 26	27 28	29 80 1	91 52 5	0 24 2	5 36 27	58 39	40 41 4	42.43.4	1 45 46	47.44	49.52.1	1 52 8	5 64 81	54 67	58 59	62 81	2 40	64 65 6	16 67 6	49 70	0 71 75	2 73 74	4 75 76	22 28	79.80	81 82	83 84
Tunnel portal				-	-	-	-	-							-	-	+	+	+	+	-			-	-	+	+	+	+	+	+	+	-	+	-		\square	\vdash	
Excavation and support access gallery AG1																				-							-	\top	+	+	+	-	-	-	-				
Upper chamber AC1																														+	\top	+		-	-				
Connection gallery upper chamber to upper level MDC																																1			-				
Individual connections to MDC domes																																			\square				
Connection with shaft																																							
Widening of railway tunnel and connection to shaft																																							
Raise boring				_			-								_																								
	-	_	_	-	_	-	-	-	-	_				_			-	_	-	-	-	_	_	-	-	_	-	-	-						-	_			
VENTILATION GALLERY		-	-	+	+	+	+-	+	-					-		-	+	-	+	-	-		-	-	-	-	-	+	+	-	-	-	-						
Excavation and support ventilation gallery AG1	+ +	-	-+-	+	+-	+	+-	+-	-							-	-	+	+	+	-		\vdash	-+	+	+	+	+-	+-	+	+	+		-	-	\vdash	\square		
Raise Boring of ventilation shaft			_	-		-	-	-	_					_	_	_		-	-	-	-			-	_	_	-	+	-	-	-	-	-	-					
ACCESS GALLERY TO LOWER LEVEL MDC	—	-	-	-	-	-	-	-	-	_			_	_	_	-	-	-	-	-	_		-	-	-	_	-	-	-	-	-	-	-	-	-	_	_	_	
Excavation and support access gallery AG1 to lower level MDC3					-	-	-	-							-	-	+	+	+	+	-			-	+	+	+	+	+	+	+	+	-	+	-		\vdash	\vdash	-
Excavation and support access gallery AG1 to lower level MDC2																-	+	-	+	-				-	+	+	+	+	+	+	+	+	-	-	-	\square	\vdash	\vdash	
Excavation and support access gallery AG1 to lower level MDC1																				1				-	+	+	-	t	1	-	1	1	-	-	-	\square	\vdash	\square	-
						-	-	-	-				_	_	_	-		-	-	-	-			-	-	-	-	+	-	+	+	-	-	-	-				=
AUXILIARY CAVERN CONSTRUCTION						1					×									1						T	T	T											
Excavation and support AC2's (Water purification)			_															_																					
Excavation and support AC1+AC3 (Control, storage & power transf)		_																																					
				_	_	-	-	-	-	_	_		_			_	_	_			-	_	_	_			-	-	-			-	-	-		-	-	-	-
CONSTRUCTION MDC-3	+			+	+	+	-	-	-		_	_		-	-	-	+	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-							
Excavation and support lower perimetral gallery	+	-	\rightarrow	+	-	+-	+-	+		\vdash	-	_	_	\rightarrow	\rightarrow	+	+	+	+-	-			-	\rightarrow	+	+	+-	+-	+-	+	+	-	-	-		\square	\square		
Fibs to level 1210,48	+		-+-	+	+	+-	+	+		\vdash	-	_		\rightarrow	-+	-	+	+	+-	+				\rightarrow	+	+	+-	+	+	+-	-	-	-	-		\square	\square		_
Excavation and support lower perimetral gallery	+	-	+	+	+	+-	+	+	-	\vdash	-	-	_	_	\rightarrow	+	+	+-	+-		-		-	\rightarrow	+	-	+-	+-	+-	+	+	-	-		\vdash	\square	\square		
Pilbs to upper cavern	+		-+-	+	+	+-	+		-		-		_	-+-	\rightarrow	+	+	+	+-	+				-	+	+-	+-	+	+	+	+	-			\square	\square	\square		
Excavation and support of upper dome	+		+	+	+	+	+	+	-	\vdash	-	-	_	-+-	-	-	+	-	+	+			\rightarrow	\rightarrow	+	+	+-	+-	+-	+-	-	-				\square	\square	$ \rightarrow $	
Concrete pouring for ribs and galleries	+	-	\rightarrow	+	+	+-	+	+	-		-		-	-	-	-		-	+	-				-+-	+	+-	+-	+-	+	+		-			\vdash	\square	\square	$ \rightarrow $	
Excavation y support dome	+		-	+	+	+-	+	+	-		-	-	-	-	-+-	+	+	_	-				\rightarrow	-	+	+	+	+-	+-	+		-			\square	\square	\square	\rightarrow	_
Raise boring (MDC)	+			+	+	+	+	-	-		-	-	-	\rightarrow	-+	+	+	+	+	-		_		-	-	_	+-	+	+	+	+	-	-		\square	\square	$ \rightarrow $	_	_
Excavation and support (cylinder) (m3)		-	-	-	-	-	-	-	-		_	_	_	-	_	_	-	-	-				_	_	_	_	-			-	-							_	_
CONSTRUCTION MDC-2	<u> </u>	_	_			-	-	_	-	_	_	_	_	-	-	-	-	_	-	_	_	_		-	-	-	-	-	-	-	-	_	_		_	_	_	_	
Excavation and support lower perimetral gallery		-		-	-	+		-				-		-	-	+	+		+	-			-	+	+	+	+	+	+	+	+	-	-		\vdash	\vdash	\vdash	-	-
Fibs to level 1∠10,48			+	+	+	+	-					_		-	-	-	+		-	-			-+	-	+	+	+	+	+	+	+				\vdash	\vdash	-	\rightarrow	-
Excavation and support lower perimetral gallery			-	-	-	+	-	-				_		-	-	+	+	+		-			-	-	+	+	+	+	-	+	+	-	-		\vdash	\vdash	$ \rightarrow $	\rightarrow	\neg
Ribs to upper cavem		-		+	-	+	-					-	-	-	-	-	+	+		-			-	-	+	+	+	-	+	+	+				\vdash	\vdash	-+	\rightarrow	-1
Excavation and support of upper dome			-	+	+	+	-						-	-	-	+	+	+-					-	+	+	+	+	+	-	+	-	-			\vdash	$ \rightarrow $	-+	-	-
Concrete pouring for ribs and galleries			-	+	+	+	-						-	-	-	-	+	-	1					-	+	+	+	+	-	+	-	\vdash			H	-	\rightarrow	\rightarrow	-1
Excavation y support dome				-	-	+	-	-				-	-	-	-	+	+	-	+					+	-	-	+	$t \rightarrow$	$t \rightarrow$	+	-	\vdash			\vdash	-	\rightarrow	\rightarrow	-
Raise boring (MDC)		-	-		-	+	-				-		-	-	-	+	+	+	+			-	-				-	-	-	+-	-	-			\vdash	-	\rightarrow	\rightarrow	-
Excavation and support (cylinder) (m3)		-	+	+	+	+	+	-			-		-	-	-	+	+	+	+			-	-+	+	+			-							\vdash	\rightarrow	\rightarrow	\rightarrow	-
		_	_	_	-	1	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+		-		-		-				-	=	=	=
CONSTRUCTION MDC-1																												T										_	-
Excavation and support tower permetral gallery																																							
Flibs to level 1210,48																																							
Excavation and support lower perimetral gallery																																							
Ribs to upper cavern																																						-	
Excavation and support of upper dome																																					-	-	
Concrete pouring for ribs and galleries																									T												-	-	
Excavation y support dome																																					-	-	
Raise boring (MDC)																																				-	+	-	
Excavation and support (cylinder) (m3)																																							
						-	-	-			-	-	-	-	_		-	-	-	-		-	-		-	-	-	-		-				_		-	-	-	

How long will it take ????

								C	GLAC	IER M	DC. (TAB	LE							
												MO	NTHS											
			YE.	AR 1					YE/	AR 2					YE/	AR 3					YE	AR 4		
PART OF CIVIL WORKS	1 2	34	56	78	9 10) 11 12	13 14	15 16	17 18	19 20	21 22	23 24	25 26	27 28	29 30	31 32	33 34	35 36	37 38	39 40	41 42	43 44	45 46	47 48
ACCESS GALLERY	_						┣──	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	\vdash		—					
Tunnel Portal		L	<u> </u>	<u> </u>	L	L			L	<u> </u>		<u> </u>						<u> </u>						\vdash
Excavation and support access gallery AG1																								
Upper chamber AC1																								
Widening of railway tunnel and connection																								
VENTILATION GALLERY	_			<u> </u>	<u> </u>		<u> </u>		<u> </u>	1		<u> </u>	<u> </u>					<u> </u>	<u> </u>					
Excavation and support ventilation gallery AG1																								
Raise Boring of ventilation shaft																								
ACCESS GALLERY TO LOWER LEVEL MDC	-						-		1	1			-					1				-	_	—
Tunnel branch (1223,190)		<u> </u>	\vdash	\vdash					<u> </u>									<u> </u>						
Excavation and support AG1	+	+	\vdash	\vdash					-	\vdash		\vdash			<u> </u>	<u> </u>	<u> </u>	 	-					
	_		-	-						-		-						-						
AUXULIARY CAVERN CONSTRUCTION	_		<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>	<u> </u>							
Excavation and support AG1+ "AC1+AC3"		\square	\vdash	\vdash						\square		\vdash												
Excavation and support AG2+AC1		<u> </u>	\vdash	\vdash					<u> </u>	<u> </u>		\vdash						<u> </u>						
	╞	<u> </u>	<u> </u>	<u> </u>	<u> </u>	-		<u> </u>	<u> </u>	<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>			
MDC EXCAVATION AND SUPPORT																								
Lower perimetral gallery																								
Ribs to level 1210,48																								
Intermediante perimetral gallery																								
Ribs tu upper cavern																								
Excavation and support, upper cavern																								
Concrete pouring for ribs and galleries																								
Excavation and support (dome) (m3)																								
Raise boring (MDC)																								
Excavation and support (cylinder) (m3)																								

Summary / Conclusions

 A very detailed feasibility study for LAGUNA at the LSC has been performed with positive results

It is documented in the almost final (but yet preliminary) LAGUNA-WP2's "Interim Report for the LSC" (<u>http://www.lsc-canfranc.es/</u> \rightarrow activity \rightarrow LAGUNA) I brought a paper copy should you want to have a look today

- Many items have not been presented here due to lack of time (in particular installations and auxiliary infrastructures). Please have a look to the above documents
- The Canfranc area is excellent to provide the social / living needs of the people forming a large Collaboration like LAGUNA

The LSC is found to be very well suited to locate any of the LAGUNA experiments

 However much work is yet to be done to solve the equation technology + *location* + beam = excellent_physics
 The UAM and LSC are working hard on it